Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are an increasing concern in intensive care units (ICUs) worldwide. The combination of carbapenemases and 16S rRNA-methyltransferases (16S-RMTases) further reduces the therapeutic options. OXA-carbapenemase/A. baumannii clone tandems in Latin America have already been described; however, no information exists in this region regarding the occurrence of 16S-RMTases in this microorganism. In addition, the epidemiology of A. baumannii in ICUs and its associated resistance profiles are poorly understood. Our objectives were as follows: to study the clonal relationship and antibiotic resistance profiles of clinical and digestive colonizing A. baumannii isolates in an ICU, to characterize the circulating carbapenemases, and to detect 16S-RMTases. Patients admitted between August 2010 and July 2011 with a clinically predicted hospital stay >48hr were included. Pharyngeal and rectal swabs were obtained during the first fortnight after hospitalization. Resistance profiles were determined with MicroScan® and VITEK2 system. Carbapenemases and 16S-RMTases were identified by PCR and sequencing, and clonality was assessed by pulsed-field gel electrophoresis and multilocus sequence typing. Sixty-nine patients were studied and 63 were diagnosed with bacterial infections. Among these, 29 were CRAB isolates; 49 A. baumannii were isolated as digestive colonizers. These 78 isolates were clustered in 7 pulsetypes, mostly belonging to ST79. The only carbapenemase genes detected were blaOXA-51 (n=78), blaOXA-23 (n=62), and blaOXA-58 (n=3). Interestingly, two clinical isolates harbored the rmtC 16S-RMTase gene. To the best of our knowledge, this is the first description of the presence of rmtC in A. baumannii.